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Marcus V. de A. Batista d, Márcio R. Viana Santos a,b,f, Jullyana de S. Siqueira Quintans a,b,e, 
Lucindo J. Quintans-Júnior a,b,f, André S. Barreto e,f,* 
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A B S T R A C T   

Farnesol (FAR) is a sesquiterpene alcohol with a range of reported biological effects including cardioprotective, 
antioxidant and antiarrhythmic properties. However, due to its volatility, the use of drug incorporation systems, 
such as cyclodextrins, have been proposed to improve its pharmacological properties. Thus, the aim of this study 
was to evaluate and characterize the cardiovascular effects of FAR alone, and to investigate the antihypertensive 
effects of FAR complexed with β-cyclodextrin (βCD) in rats. Mean arterial pressure (MAP) and heart rate (HR) 
were measured before and after intravenous administration of FAR (0,5; 2,5; 5 and 7,5 mg/kg) in normotensive 
rats, and after oral acute administration (200 mg/kg) of FAR and FAR/βCD complex in NG-nitro-L-arginine- 
methyl-ester (L-NAME) hypertensive rats. In normotensive animals, FAR induced dose-dependent hypotension 
associated with bradycardia. These effects were not affected by pre-treatment with L-NAME or indomethacin 
(INDO), but were partially attenuated by atropine. Pre-treatment with hexamethonium (HEXA) only affected 
hypotension. In the hypertensive rats, FAR/βCD potentialized the antihypertensive effect when compared to FAR 
alone. Molecular docking experiments demonstrated for the first time that FAR has affinity to bind to the M3 and 
M2 muscarinic, and nicotinic receptors through hydrogen bonds in the same residues as known ligands. In 
conclusion, our results demonstrated that FAR induced hypotension associated with bradycardia, possibly 
through the muscarinic and nicotinic receptors. The inclusion complex with βCD improved the antihypertensive 
effects of FAR, which can be relevant to improve current cardiovascular therapy using volatile natural 
components.   

1. Introduction 

Arterial hypertension is a multifactorial chronic disease that is 
considered the most common risk factor for cardiovascular disease 
(CVD) development, which currently affects more than 1 billion people 
worldwide (Mendis et al., 2011; Mills et al., 2016). Thus, controlling 
high blood pressure is crucial to avoiding cardiovascular complications 
(Sociedade Brasileira de Cardiologia, 2016). Worldwide, less than 40% 
of people with hypertension are currently in treatment, and only around 

14% have their systolic blood pressure controlled (Mills et al., 2016). 
Hence, the effective treatment of hypertension remains a global chal-
lenge, and the development of effective, cheaper drugs with minimal 
side effects could help to reduce the burden on public health. 

In this context, essential oils have in recent decades been attracting 
attention due to their therapeutic effects (Bakkali et al., 2008; de 
Andrade et al., 2017; Menezes et al., 2010; Moreira et al., 2010). They 
are a volatile liquid comprising a complex mixture of different sub-
stances that occur naturally in aromatic plants, with terpenes being the 
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main component (Bakkali et al., 2008; Dewick, 2009). Farnesol (FAR), 
(3,7,11-trimethyl-2,6,10-dodecatriene-1-ol), is an alcoholic sesquiter-
pene, with the chemical formula C15H26O (Duke, 1981) (Fig. 1). It is 
widely employed in industry in cleaning products, cosmetics and per-
fumes. Moreover, FAR is generally recognized as safe (GRAS) as a flavor 
ingredient for human consumption by the U.S. Food and Drug Admin-
istration (FDA) (Lapczynski et al., 2008). 

Pharmacological effects of FAR have been demonstrated in respect 
of: growth suppression of pancreatic carcinoma (Burke et al., 1997), 
antioxidant potential (Khan and Sultana, 2011), blockade of type-L 
calcium voltage-gated channels in vascular smooth muscle cells (Luft 
et al., 1999; Roullet et al., 1997), antiarrhythmic effects (Souza et al., 
2019), and cardioprotective activity against ischemia/reperfusion 
injury (Szűcs et al., 2013). However, such properties can be compro-
mised by the high volatility, poor solubility in aqueous systems and 
short half-life of most terpenes (Carneiro et al., 2019; Siqueira-Lima 
et al., 2014), especially when oral administration is used. To overcome 
these limitations, encapsulation in drug-delivery systems has been used, 
mainly in cyclodextrins (Camargo et al., 2018; Carneiro et al., 2019; de 
Oliveira-Filho et al., 2018; Moreira et al., 2016; Pinho et al., 2014). 

Cyclodextrins (CDs) are cyclic oligosaccharides composed by six, 
seven or eight glucopyranose units (⍺, β and γ cyclodextrins, respec-
tively) united together by α-1,4-glycosidic bonds (Stella and He, 2008). 
They are characterized by a hydrophilic exterior surface and a lipophilic 
central cavity (Loftsson et al., 2007). CDs have been widely used to form 
complexes with natural compounds, such as terpenes, and it has been 
shown that they improve their solubility and stability, while possibly 
reducing any toxic effects (Marques, 2010; Moreira et al., 2016; Pinho 
et al., 2014; Quintans-Júnior et al., 2013). Moreover, CDs are also 
recognized by the FDA as being safe and are already present in several 
products, including drugs (Loftsson and Brewster, 2010; Uekama et al., 
1998; Zafar et al., 2014). 

In recent years, the use of CDs has increased, mostly in complexing 
essential oils, such as mono and sesquiterpenes (Carneiro et al., 2019). 
When complexed with CDs, such compounds become an easy-to-handle 
powder, show better therapeutic effects, bioavailability and allow dose 
reduction (Marques, 2010; Pinho et al., 2014). β-cyclodextrin (βCD) is 
one of the most commonly used CDs, due to its low price, versatility, 
efficiency and low toxicity (Ciobanu et al., 2013; de Oliveira-Filho et al., 
2018; Pinho et al., 2014). 

Therefore, we aimed to evaluate the cardiovascular effects of far-
nesol alone, and possible improvements produced by complexing it with 
βCD to use in the treatment of arterial hypertension. 

2. Material and methods 

2.1. Drugs and reagents 

Farnesol (FAR, ≥ 95% purity), β-cyclodextrin (βCD, 98% purity), 
hexamethonium bromide (HEXA), atropine sulphate, indomethacin 
(INDO), nifedipine and NG-nitro-L-arginine-methyl-ester (L-NAME) 
were all purchased from Sigma-Aldrich (St. Louis, MO, USA); Tween 80 
from Oxiteno, Brazil; and ketamine chloride and xylazine from SESPO, 
SP, Brazil. For vehicle solutions, tween 80 was solubilized in saline so-
lution (0.15% v/v). FAR was solubilized in saline/tween 80 (0.15% v/v), 
for intravenous administrations, or distilled water/tween 80 (0.15% v/ 
v), for oral administrations. 

2.2. Preparation of inclusion complex 

The inclusion complex between FAR and βCD was made by slurry 
complexation (SC) process, as described by Silva et al., (2017) (Silva 
et al., 2017). Briefly, 222.37 mg of FAR was manually mixed in a por-
celain crucible containing βCD (1135 mg), in a 1:1 M ratio. For SC, 20 ml 
of distilled water was added to the above mixture in a magnetic agitator 
for 36 h. Thereafter, the material was dried in a desiccator at room 
temperature to form a film, which was removed by manual trituration 
and then stored in airtight glass containers (Menezes et al., 2013; Silva 
et al., 2017). 

2.3. Animals 

Adult male Wistar normotensive rats (250–350 g) were used for all 
the experiments. The animals were randomly housed in appropriate 
cages at a controlled temperature (25 ± 1 ◦C) on a 12-h light/dark cycle 
(6:00 a.m. to 6:00 p.m.) with free access to food (Purina®, Sao Paulo, 
Brazil) and tap water. 

All procedures described in the present study were approved by the 
Animal Research Ethics Committee of the Federal University of Sergipe 
(protocol 56/17). Animal handling was in compliance with the Princi-
ples of Laboratory Animal Care (NIH publication 86–23, revised 1985; 
nih.gov/regs/index.htm). In addition, all efforts were made to minimize 
the number of animals used and any discomfort. 

2.4. Hemodynamic evaluation of FAR by intravenous administration in 
normotensive rats 

The measurements of mean arterial pressure (MAP) and heart rate 
(HR) were performed as described by Nascimento et al. (2019) (Nasci-
mento et al., 2019). Briefly, the rats were anaesthetized with ketamine 
(80 mg/kg) and xylazine (10 mg/kg) intraperitoneally. Polyethylene 
catheters filled with heparinized saline were inserted into the abdominal 
aorta artery and the lower vena cava via the left femoral artery and vein, 
respectively. The vein access was used for FAR and pharmacological tool 
administration. Thereafter, following subcutaneous insertion and fixa-
tion, the catheters were exteriorized through a skin incision between the 
scapulae. The animals were put in individual cages and allowed a 24-h 
post-surgery recovery period before the experiments. 

For the measurements, the arterial catheter was connected to a 
pressure transducer (Edwards Lifesciences, Irvine, CA, USA) coupled to 
an amplifier (FE221, Bridge Amp; ADInstruments, Bella Vista, NSW, 
Australia). The data were recorded using a computer with an analog- 
digital interface, and were processed using the software LabChart Pro 
v.7 (ADInstruments, USA). After the recovery period (24h), MAP and HR 
were measured before (baseline values) and after the intravenous 
administration of FAR (0.5, 2.5, 5 and 7.5 mg/kg, n = 8) or vehicle (n =
8) in order to obtain dose-response curves. The injections were made 
randomly in each animal subject, with time interval between doses 
enough to allow full recovery of the baseline hemodynamic values. 

To verify the role of the muscarinic receptors; nitric oxide (NO); 
cyclooxygenase (COX) metabolites, mainly prostacyclin (PGI2); and 
nicotinic receptors, a second series of experiments were performed in 
which animals (n = 6, each group) were pre-treated separately and 
randomly with either atropine, (2 mg/kg, i.v., 15 min), a muscarinic 
cholinergic antagonist (Mitchelson, 1984); L-NAME, (20 mg/kg, i.v., 30 

Fig. 1. Chemical structure of farnesol.  
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min), a nitric oxide (NO) synthase inhibitor (Ribeiro et al., 1992); 
indomethacin (INDO), (5 mg/kg, i.v., 30 min), a potent cyclooxygenase 
inhibitor (Clark and Fuchs, 1997); or hexamethonium (HEXA), (20 
mg/kg, i.v., 30 min), a ganglionic blocker (Takahashi and Owyang, 
1997), respectively. All doses were chosen based on previous studies 
(Bastos et al., 2010; Moon et al., 2013; Moreira et al., 2010; Santos et al., 
2015). After the pre-treatments, the same doses of FAR was adminis-
trated to obtain new dose-response curves. The changes of MAP and HR 
for each dose was expressed as a percentage of baseline values in awake 
normotensive animals by the formula: 

% Response=
[(

MAPfinal − MAPinitial
)
× 100

MAPinitial

]

2.5. Hemodynamic evaluation of FAR and the complex FAR/βCD by oral 
administration in hypertensive rats 

To identify the effects of FAR and its complex FAR/βCD adminis-
trated orally, another set of experiments were performed. Hypertensive 
animals were obtained through administration of L-NAME (20 mg/kg) 
by oral route (gavage) for seven days (Biancardi et al., 2007; Moreira 
et al., 2016). The animals were divided into four groups (n = 5, each) as 
follows: farnesol (200 mg/kg) (FAR), complex form FAR/βCD (200 
mg/kg) (FAR/βCD), vehicle group (distilled water and βCD) (VG) and 
group treated with nifedipine (10 mg/kg) (NG), a reference antihyper-
tensive drug used as a positive control (Beevers et al., 2015). All treat-
ments were administered by gavage in a single dose. MAP and HR were 
recorded at the time 0 (before treatments) and 0.5, 1, 2, 3, 4, 8, 24, 30 
and 48 h after treatments. The hemodynamic measurements were made 
as described by Nascimento et al. (2019). 

2.6. Molecular docking 

Molecular docking simulations were performed in order to study the 
interactions between FAR and three possible targets associated with its 
cardiovascular activity. The selected targets were: i) Nicotinic acetyl-
choline receptor α3 subunit (Nicotinic receptor), ii) Muscarinic acetyl-
choline receptor M2 (M2 receptor) and iii) Muscarinic acetylcholine 
receptor M3 (M3 receptor), these subtypes were chosen according to 
previous studies (Bény et al., 2008; De Biasi, 2002; Harvey, 2012; 
Hoover et al., 1994). Of the three defined targets, only the M3 receptor 
structure has been experimentally determined for Rattus norvegicus (PDB 
code: 5ZHP). In the case of M2 and nicotinic receptor, structural models 
for the rat proteins were generated using Modeller 9.19 (https://salilab. 
org/modeller/) (Sali and Blundell, 1993). 

This homology modelling technique is based on the observation that 
similarity between proteins at the sequence level is reflected at the 
structural level. Therefore, if the 3D structure of a given protein is 
available, it is possible to generate models of proteins homologous to it. 
Generally, when the sequence identity is above ~ 30%, homology is 
assumed (Hillisch et al., 2004). In addition, there is a consensus that 3D 
models that share a sequence identity with their templates greater than 
~ 50% are frequently accurate enough for drug discovery studies 
(Cavasotto and Phatak, 2009; Hillisch et al., 2004). Thus, the M2 and 
nicotinic receptors from rat have 67.56% and 77.19% sequence identity, 
respectively, with experimentally solved structures. 

To perform homology modelling, the amino acid sequences obtained 
from Uniprot (https://www.uniprot.org/) and the templates with the 
Protein Data Bank (PDB) codes 3UON and 6PV7 were used, which 
correspond to the human M2 and nicotinic receptor, respectively. Ten 
models were generated for each receptor, then a validation of the models 
was made using Procheck (Laskowski et al., 1993). Procheck is a 
physic-based method that assess the quality of a structure based on 
several stereochemical parameters, including the distribution of back-
bone torsion angles Φ and Ψ (Ramachandran plot). The different regions 
of the plot are core, allowed, generously allowed and disallowed. 

Structures with more than 90% of residues in the core region indicate 
good quality. The best model of M2 receptor presented 95% of the res-
idues in this region, and the best model of the nicotinic receptor pre-
sented 91.5%. 

For molecular docking, a comparative approach was used in which 
the predicted interactions for the target-FAR complexes were compared 
with interactions between the targets and known antagonists or ago-
nists. The structure of farnesol was obtained from the PubChem database 
(Compound id: 3327) (https://pubchem.ncbi.nlm.nih.gov/). In addition 
to FAR, the compounds (1R, 2R, 4S, 5S, and 7S) − 7 - ({[4-fluoro-2- 
(thiophen-2-yl) phenyl] carbamoyl} oxy) − 9,9- dimethyl-3-oxa-9- 
azatricyclo [3.3.1.0–2.4 ~] nonan-9-ium) [abbreviated to 9 EC: M3 re-
ceptor antagonist]; (3R) -1-azabicyclo [2.2.2] oct-3-yl hydroxy 
(diphenyl) acetate [QNB: M2 receptor antagonist]; and Nicotine [NCT: 
nicotinic receptor agonist] were also used as ligands. Ligand structures 
were obtained from the PDB with the above-mentioned codes. Ligand 
and receptor structures were prepared using the programs Open Babel 
(O’Boyle et al., 2011) and VMD 1.9.3 (Humphrey et al., 1996). 

Docking calculations were then performed using the AutoDock Vina 
method (Trott and Olson, 2009), implemented in PyRx 0.8 (Dallakyan 
and Olson, 2015). AutoDock Vina measures the binding energy through 
a hybrid scoring function that uses aspects of knowledge-based poten-
tials and empirical scoring functions. The scoring function has five 
terms: three correspond to steric interactions, one to hydrophobic in-
teractions and one to hydrogen interactions. The energy calculation is 
based on the weighted sum of these terms (Trott and Olson, 2009). For 
each receptor, the grid center was positioned at the allosteric or 
orthosteric binding pockets, with the cube dimensions being 25 × 25 ×
25 Å. All other parameters were defined as default. To analyze the re-
sults of the molecular docking, the Discovery Studio v16 program was 
used (BIOVIA). 

2.7. Statistical analysis 

Values were expressed as mean ± standard error of the mean (S.E.M). 
To evaluate differences between means, Student’s t-test or one- or two- 
way analysis of variance (ANOVA) followed by Bonferroni’s post-test 
were used, and a p < 0.05 was considered significant. All statistical 
analyses were done using Graph Pad Prism 6.01™  (Graph-Pad Prism 
Software Inc., San Diego, CA, USA). 

3. Results 

3.1. Effect of intravenous administration of FAR on hemodynamic 
parameters in normotensive rats 

In order to obtain the first dose-response curves of the effect of FAR 
in normotensive rats, intravenous administration in awaken rats were 
performed. The baseline MAP value in the non-anaesthetized normo-
tensive rats was 118 ± 8 mmHg, and HR was 342 ± 9 bpm (n = 8). In 
these animals, intravenous bolus injections of FAR (n = 8) induced a 
dose-dependent and transitory hypotension from 0.5, 2.5 and 5 mg/kg 
doses (105.2 ± 3.9, 78.4 ± 6.4, 71.4 ± 7.5 mmHg, respectively), and at 
dose of 7.5 mg/kg, a less intense hypotension (82.1 ± 12.1 mmHg). This 
effect was associated with a significant bradycardia at all doses (279.9 ±
34, 167.4 ± 31, 152.1 ± 35 and 171.8 ± 45 bpm, respectively) (Fig. 2). 

3.1.1. Participation of muscarinic and nicotinic receptors, COX metabolites 
and nitric oxide in FAR-induced responses in normotensive rats 

Regarding pre-treatment with atropine, the HR baseline increased 
from 342 ± 9 to 535 ± 12 bpm, with no change in MAP; L-NAME 
increased MAP from 118 ± 8 to 162 ± 4 mmHg, and decreased HR from 
342 ± 9 to 277 ± 9 bpm; HEXA decreased MAP from 118 ± 8 to 104 ± 3 
mmHg, and increased HR from 342 ± 9 to 396 ± 14 bpm. However, 
there was no change in any parameter following pre-treatment with 
INDO. 
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The hypotension and bradycardia induced by FAR in rats pre-treated 
with L-NAME and INDO did not significantly change. However, pre- 
treatment with HEXA was able to attenuate the hypotension induced 
by the doses of 0.5 and 2.5 mg/kg (P < 0.01). In the presence of atropine, 
hypotension was attenuated only by the 2.5 mg/kg dose (P < 0.01), in 
addition, the bradycardia was fully abolished by the 2.5, 5 (P < 0.0001), 
and 7.5 mg/kg (P < 0.001) doses (Fig. 3A and B). 

3.2. Inclusion complex containing FAR in β-cyclodextrin (βCD) enhanced 
the antihypertensive effect of sesquiterpene via oral route 

After confirming the cardiovascular effects of FAR administered by 
the intravenous route in normotensive rats, we aimed to test the 
administration of both FAR and its complexed form with βCD by the oral 
route in hypertensive rats. The animals were pre-treated with L-NAME 
(20 mg/kg/day) for seven days via oral route (gavage) and showed an 
increase in MAP from 122 ± 4 to 156 ± 7 mmHg (P < 0.01; n = 5), 
confirming the hypertensive condition (Fig. 4A). On the other hand, 
mean HR before (377 ± 7 bpm) and after L-NAME treatment (397 ± 7 
bpm) did not change significantly (Fig. 4B). 

L-NAME hypertensive animals treated with vehicle (VG) did not 
present any significative change in MAP. However, treatment with 

nifedipine (NG) was able to significantly reduce MAP from 0.5 until 8 h 
after treatment, compared to the complex (FAR/βCD), farnesol (FAR) 
and vehicle group (VG). FAR only induced a significant decrease in MAP 
at 48 h; however, FAR/βCD significantly reduced MAP at 30 and 48 h 
when compared to the VG (Fig. 4A). Regarding heart rate (HR), the NG 
group presented a significant increase between 0.5 and 3 h, when 
compared to FAR/βCD and FAR groups (Fig. 4B). HR was reduced 
significantly in the FAR/βCD group at 0.5, 1 and 2 h compared to VG, 
and additionally between 1 and 3 h, compared to the FAR group. Neither 
VG or FAR presented any significant change in HR. 

3.3. Molecular docking 

The molecular docking procedure was validated based on the 
redocking of ligands 9 EC, QNB, and NCT, in their respective targets 
obtained from PDB (5ZHP, 3UON and 6PV7, respectively). The poses of 
the ligands with the best redocking scores were very close to the 
experimentally determined conformations (Fig. 5). Regarding the 
docking analysis, although the volume of the defined grid is consider-
ably greater than the volume of the allosteric or orthosteric binding 
pockets, and the ligands can bind in other regions of the proteins, for all 
the studied targets the conformations of the ligands with better scores 

Fig. 2. Original traces showing the effect of FAR (0.5, 2.5, 5 and 7.5 mg/kg, i.v.) on pulsatile arterial blood pressure of normotensive rats. The arrows represent the 
time of injection. 

Fig. 3. Effect of FAR (0.5; 2.5; 5, and 7.5 mg/kg, i.v.) on MAP (A) and HR (B) in normotensive rats. Values are mean ± S.E.M. of eight experiments. **P < 0,01; ***P 
< 0,001 and ****P < 0,0001 vs vehicle; ###P < 0,001 and ####P < 0,0001 vs baseline; & P < 0,05 and && P < 0,01 FAR vs FAR (0.5 mg/kg). 
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were restricted to these sites (Fig. 5). For the following analyzes, the best 
pose of ligands for each receptor was selected. 

The predicted binding energies for the complexes formed with FAR 

were − 7.6 kcal/mol, − 7.3 kcal/mol, and − 7.2 kcal/mol for the M3, M2, 
and nicotinic receptors, respectively. This indicates that FAR has a 
slightly higher affinity for the M3 receptor compared to the others. The 

Fig. 4. Hypotensive and bradycardic response induced by FAR in normotensive rats before (FAR control) and after acute administration of atropine (2 mg/kg, i.v.), 
HEXA (20 mg/kg, i.v.), L-NAME (20 mg/kg, i.v.) or INDO (5 mg/kg, i.v.). Values are mean ± S.E.M. of 6 experiments. **P < 0.01, ***P < 0.001 and ****P < 0.0001 
vs FAR (control). 

Fig. 5. Mean Arterial Pressure (A) and Heart Rate 
(B) of L-NAME hypertensive rats before (time 0) and 
after 0.5, 1, 2, 3, 4, 8, 24, 30 and 48 h of the 
administration of vehicle (VG), nifedipine (NG), 
farnesol (FAR) or the complex (FAR/βCD) by oral 
route. Values are mean ± S.E.M. of 5 experiments. $ 

P < 0,05, $$ P < 0,01, $$$$ P < 0,0001, *P < 0,05, 
**P < 0,01, ***P < 0.001, ****P < 0.0001 vs FAR/ 
βCD; & P < 0,05, && P < 0,01, &&& P < 0.001, &&&& 

P < 0.0001, τ P < 0,05, τ τ τ P < 0.001 vs VG;+P <
0.01, ++++ P < 0.0001, #P < 0,05 vs FAR.   
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2D representation of the complexes, the types of interactions, and 
participatory residues can be seen in Fig. 6. The main interactions that 
occur between the M3 receptor and the 9 EC antagonist are hydrogen 
bonds through the residues SER151 and ASN507, electrostatic in-
teractions with ASP147 and TYR529, and hydrophobic interactions. 
Similarly, according to the docking analysis, the M3-FAR complex in-
teracts with ASN152 and ALA238 residues through hydrogen bonds, in 
addition to hydrophobic interactions with seven other residues, 
including TYR529, which also interacts with 9 EC. 

The QNB antagonist binds to its target, human-M2, through hydrogen 
bonds with ASN404, in parallel with seven other residues that favor the 
formation of the complex through hydrophobic interactions, mainly 
TYR104 and TYR403. Our results indicated that FAR also interacts with 
the TYR104 residue from rat-M2, but through a hydrogen bond, in 
addition to another h-bond formed with ASN108. Moreover, hydro-
phobic interactions with other residues of the allosteric site also 
contributed to stabilization. 

Finally, it was predicted that FAR can bind precisely at the orthos-
teric site of the nicotinic receptor. Interestingly, the binding energy of 
FAR to the rat-nicotinic receptor was higher than that of nicotine, being 
− 7.2 and − 6.9 kcal/mol, respectively. These results indicate that FAR 
has an affinity for the nicotinic receptor comparable to its agonist. The 
predictions suggest that FAR interacts with this receptor through a 
hydrogen bond with residue LYS132, that is homologous to LYS113 from 
human nicotinic receptor, and located at β4 subunit region that 

constitutes the binding pocket. Hydrophobic interactions mediated by 
residues located at the interface also occurred. 

4. Discussion 

The search for new pharmacological therapies has been increasing in 
recent years, especially in respect of CVDs, for which there is an urgent 
need to find new treatment options. For this reason, and given the few 
pharmacological studies regarding the cardiovascular effects of FAR, the 
present study aimed to investigate its therapeutic effects, and to evaluate 
whether the FAR/βCD inclusion complex would be able to improve the 
pharmacological properties of this sesquiterpene. Our main results 
showed that when administrated intravenously, FAR alone was able to 
reduce MAP and HR in normotensive rats. This hypotensive effect seems 
to involve the muscarinic and/or nicotinic receptors, while the brady-
cardia induced by FAR is probably through the muscarinic receptors. 
This indication was later confirmed by a docking analysis. Furthermore, 
oral treatment with FAR and the FAR/βCD complex showed an antihy-
pertensive effect in an L-NAME-induced animal model, and, more 
interestingly, the pharmacological activity of the βCD complex had a 
better and longer lasting effect than the FAR alone, which seems to be as 
a result of an improvement in the bioavailability of FAR when protected 
in the βCD complex. 

In order to test the hypothesis whether FAR would induce cardio-
vascular effects, we injected FAR in normotensive rats. In these animals, 

Fig. 6. Comparison of the conformation of ligands in allosteric (M3 and M2) and orthosteric (nicotinic) receptor binding sites. (A) represents the redocking pro-
cedure for each experimental structure of receptor utilized, the ligand conformation at experimental and redocking fit are superimposed. (B) Tridimensional rep-
resentation of molecular docking results, all three proteins are from Rattus norvegicus. The conformation of farnesol (red) was compared with the respective 
antagonist (9 EC for M3, QNB for M2) or agonist (NCT: nicotinic). 
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the baseline MAP and HR values were the same as described in previous 
studies (Anjos et al., 2013; Cunha et al., 2004; de Siqueira et al., 2006; 
Menezes et al., 2010). Intravenous bolus doses of FAR was able to induce 
a dose-dependent and transitory hypotension at the initial doses (0.5, 
2.5 and 5 mg/kg), and a less intense but significant hypotension at 7.5 
mg/kg dose. Such effect was associated with bradycardia. To the best of 
our knowledge, this is the first time that such effects of FAR have been 
reported in rats. Also, it is worth mentioning that even at such small 
doses FAR could induce these cardiovascular effects, proving its effec-
tiveness. Cardiovascular studies with other terpenes, such as 
(− )-α-bisabolol (Menezes et al., 2010), geranial (Moreira et al., 2010), 
anetole and estragole (de Siqueira et al., 2006), d-limonene (Nascimento 
et al., 2019), and carvacrol (Dantas et al., 2015) have also demonstrated 
the same effect of hypotension followed by bradycardia. Recently, Souza 
et al. (2019) also demonstrated that FAR had bradycardic and antiar-
rhythmic properties on isolated rat heart. 

The first studies indicating the pharmacological importance of FAR 
suggested it acted through controlling vascular tone by inhibiting 
vasoconstriction in both rat and human arteries (Roullet et al., 1996). 
Indeed, in vascular smooth muscle cells (VSMCs) it was demonstrated 
that 10 μM of FAR inhibited Ca+2 signaling (Roullet et al., 1997), spe-
cifically in respect of the ⍺(1C) subunit in the L-type Ca+2 channel (Luft 
et al., 1999). As is well known, VSMCs play an essential role in modu-
lating vascular tone in blood vessels, and, consequently, in the control of 
blood pressure (Somlyo and Somlyo, 1994). The relaxation or contrac-
tion of these cells are mediated mainly by hormones, neurotransmitters 
and endothelium derived factors (Furchgott and Zawadzki, 1980; 
Jackson, 2000). In contraction, the [Ca+2]i is increased either by 
external influx from the Ca+2 channel opening, or by release from the 
sarcoplasmic reticulum (Devine et al., 1972; Horowitz et al., 1996; 
Webb, 2003). 

Furthermore, it is also known that activation of endothelial musca-
rinic receptors results in vasorelaxation due to the release of 
endothelium-derived relaxing factors, such as NO and PGI2 (Moncada 
and Higgs, 1993; Schulz and Triggle, 1994), which decrease peripheral 
vascular resistance, ultimately leading to hypotension (Furchgott and 
Zawadzki, 1980). Hence, to verify the involvement of these receptors in 
the effects induced by FAR, we performed experiments where rats were 
pre-treated with atropine, a non-selective antagonist of these receptors 
(Mitchelson, 1984). In these animals, atropine was able to significantly 
attenuate the hypotension induced by FAR only at a dose of 2.5 mg/kg 
(Fig. 3). Thus, endothelial muscarinic receptors seems to be involved in 
this effect, at least at this dose. 

Moreover, physiological responses can also be elicited direct in the 
heart through cardiac muscarinic receptors, mostly the M2 type (Hoover 
et al., 1994; Irisawa et al., 1993), which by vagal activation in the 
sinoatrial node cause intense bradycardia, followed or not followed by 
hypotension (Harvey, 2012; Irisawa et al., 1993; Peterson et al., 1984). 
Thus, our results showed that the bradycardia was fully abolished by the 
2.5, 5 and 7.5 mg/kg doses in rats pre-treated with atropine (Fig. 3). This 
suggests that bradycardia seems to specifically involve the cardiac 
muscarinic receptors, hence contributing to a reduction in blood pres-
sure. Cunha et al. (2004) found similar results, with the sesquiterpene 
trans-caryophyllene, the major compound of Ocotea duckei essential oil 
with bradycardia being eliminated by atropine pre-treatment. 

On the other hand, the lack of effect on blood pressure after 
muscarinic blockade suggest that other mechanisms, such as ganglionic 
or vascular factors may be involved in this effect. Thus, to check if FAR 
acts via cholinergic activation through nicotinic receptors, animals were 
pre-treated with HEXA, a ganglionic blocker (Takahashi and Owyang, 
1997). Under these conditions, FAR-induced hypotension was abolished 
only by the 0.5 and 2.5 mg/kg doses, while the bradycardia was not 
significantly changed at any doses (Fig. 3). Hence, hypotension caused 
by FAR may involve, at least in part, participation of the nicotinic 
receptors. 

It is well stablished that hypotension may be caused by endothelium 

derived factors that promote vascular tonus regulation, mainly NO and 
PGI2 (Moncada and Higgs, 1991; Schulz and Triggle, 1994). Thus, it is 
possible that the decrease in blood pressure induced by FAR may be 
caused by these factors. To investigate this possible pathway, we per-
formed experiments with animals pre-treated with L-NAME or INDO. As 
shown in Fig. 3, hypotension and bradycardia were not changed by 
L-NAME pre-treatment. This suggests that NO does not appear to be 
involved in the hypotension produced by FAR, neither through an in-
dependent route of muscarinic activation or by direct activation of these 
receptors, since pre-treatment with atropine did not change MAP 
significantly either. These results are in agreement with the results of 
studies of the sesquiterpene trans–caryophyllene (Cunha et al., 2004), 
and the monoterpenes citronellal (Andrade et al., 2012) and geranial 
(Moreira et al., 2010). Likewise, INDO did not change any of the pa-
rameters either (Fig. 3), suggesting that PGI2 is not involved in the ef-
fects of FAR. 

Hypertension is a chronic condition characterized by sustained high 
blood pressure which can lead to many other cardiovascular diseases 
(Kearney et al., 2005; Whelton et al., 2018), thus increasing the burden 
on the health systems (Vasan et al., 2001). Recent data has shown that, 
despite the advances in recent decades in drug development research, 
the U.S. Food and Drug Administration (FDA) approved 33% less new 
cardiovascular drugs (Kaitin and DiMasi, 2011) compared to other 
classes of drugs such as those for the treatment of cancer and neuro-
logical disorders (Batta et al., 2020). Therefore, the need for new, less 
expensive molecular entities for CVD treatment is needed (de Andrade 
et al., 2017; Fabricant and Farnsworth, 2001; Prashant, 2017). 

For this reason, the number of studies of the pharmaceutical effects 
of natural products such as terpenes, has increased in recent years 
(Alves-Silva et al., 2016; Li et al., 2015; Newman and Cragg, 2016; 
Prashant, 2017; Silva et al., 2019). However, natural components, 
especially those from essential oils, often have some limitations that 
prevent their broadest use, including low aqueous solubility and 
bioavailability, and high instability (Siqueira-Lima et al., 2014; Zaheer 
et al., 2010). To overcome these issues, drug delivery systems using 
inclusion complexes with cyclodextrins (CDs) have been widely used 
(Ciobanu et al., 2013; de Oliveira-Filho et al., 2018; Lima et al., 2016; 
Miyake et al., 2000). Additionally, CD complexation transforms oily 
substances into easy-to-handle powder, which can also improve their 
volatility (Menezes et al., 2012; Pinho et al., 2014). Recently, a review 
by Carneiro et al. (2019) (Carneiro et al., 2019) demonstrated the bio-
logical benefits of CDs complexes in both in vivo and in vitro studies. In 
this regard, β-cyclodextrin (βCD) has been the most commonly used 
cyclodextrin to form inclusion complexes with volatile compounds, such 
as sesquiterpenes, for oral administration (Challa et al., 2005; Marreto 
et al., 2008; Serafini et al., 2012), and βCD-complexation applied in 
hypertension therapy seems to have a promising future (Alves et al., 
2019). 

Therefore, given the evidence for the pharmacological effects 
through the intravenous route, we next aimed to evaluate the effects of 
FAR, and its inclusion complex with βCD, in hypertensive rats via the 
oral route. As known, the oral route it is the most used for pharmaco-
logical treatment for hypertension (Burnier et al., 2020; Camargo et al., 
2018). The L-NAME hypertensive model is well stablished in the liter-
ature, based in the non-specific inhibition of nitric oxide sintase (NOS) 
(Biancardi et al., 2007; Ribeiro et al., 1992) when given orally for 7 days 
consecutively, and have been used elsewhere (Biancardi et al., 2007; 
Moreira et al., 2016). 

In regard to the complex FAR/βCD, a very detailed physicochemical 
characterization was made previously by our group (Silva et al., 2017), 
which shows that SC method had a 8.3% of mass loss with FAR being 
100% volatilized (100–209 ◦C). The water percentage found was 7.81 ±
0.54%, proving great substitution of water molecules from βCD cavity 
with molecules of FAR. Moreover, the complex featured small and 
misshapen crystals, which also ensure the quality and effectiveness of 
the complexation process (Silva et al., 2017). 
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In our results, the group treated with nifedipine (NG), a well-known 
Ca+2 channel blocking antihypertensive drug (Burnier et al., 2020; 
Cohan and Checcio, 1985) characterized by a rapid onset of action (Ishii 
et al., 1980), reduced MAP only from 0.5 to 8 h, and increased HR from 
0.5 to 3 h after administration. In the group treated with farnesol (FAR), 
MAP only decreased significantly at 48 h, compared to vehicle group 
(VG), with no significant change in HR at any time. Meanwhile, the 
complexed form (FAR/βCD) was able to reduce MAP at 30 and 48 h, 
compared to the VG. Further, FAR/βCD reduced HR from 0.5 to 2 h, 
compared to VG, and from 1 to 3 h compared to FAR. Vehicle treated 
animals did not present any changes in MAP or HR. 

Hence, by making a FAR/βCD inclusion complex it was possible to 
improve the antihypertensive effects of this sesquiterpene in hyperten-
sive rats in a long-lasting manner, which can be used as complement to 
existing drugs, such as nifedipine. It is worth mentioning that the 
complexed form contained only 32.7 mg of FAR, with the most of the 
complex comprising βCD (Silva et al., 2017), thus it is safe to say that 
complexation improved the cardiovascular properties of FAR. 

Accordingly, studies have shown significant improvements in the 
pharmacological properties of terpenes when complexed with cyclo-
dextrins, including in relation to the duration of the effects (Camargo 
et al., 2018; Moreira et al., 2016; Quintans-Júnior et al., 2013; Silva 
et al., 2017). Higher doses of FAR than the 200 mg/kg used in this study 
have been used previously by Luft et al. (1999), which indicates its 
safety. Therefore, it is possible that a higher dose in the complex with 
βCD may be even more effective in an animal model of hypertension, 
and should be further investigated. 

Finally, through the use of docking technique we aimed to predict 
the interaction of FAR and the receptors that may be relevant for its 
mechanism of action. According to our results, two receptors seems to be 
involved in FAR effects, the muscarinic and nicotinic receptors. It has 
been suggested that physiological responses in the heart are predomi-
nantly mediated by the M2 subtype muscarinic receptor (Harvey and 
Belevych, 2003; Hoover et al., 1994), and by the M3 subtype in blood 
vessels (Bény et al., 2008; Harvey, 2012; Khurana et al., 2004). Simi-
larly, autonomic control of the heart (Poth et al., 1997; Rust et al., 
1994), and some arteries (Brüggmann et al., 2002) is intermediated 
mainly by the ⍺-3 subtype nicotinic receptor (De Biasi, 2002), and, 
therefore, were chosen as models. 

Molecular docking is a computer-based technique that analyzes 
chemical interactions between two or more structures, indicating the 
most favorable conformation, and predicting their behavior (Attique 
et al., 2019; Kitchen et al., 2004). It is a widely known approach used to 
help and accelerate drug discovery, since testing different molecules in 
respect of the binding site of a biological target can increase the drug’s 
effectiveness by improving the physiological response (Gohlke and 
Klebe, 2002; Kitchen et al., 2004). This technique is useful when 
investigating the pharmacological properties of novel natural com-
pounds, such as terpenes, and has been extensively used (Attique et al., 
2019; Camargo et al., 2020; Moreira et al., 2016; Sampurna et al., 2019; 
Silva et al., 2017; Zheng et al., 2013). 

In our results, we demonstrated, for the first time, that FAR binds in 
the same pockets as known antagonists do, and interacts with some 
critical residues at these sites, suggesting that FAR may act as an 
antagonist for the targets of interest here. Therefore, it is possible to 
propose that the observed effects (i.e. bradycardia and hypotension) in 
the studied model may be the result of the action of FAR on the M3, M2 
and nicotinic receptors. 

As known, the minimization of energy spent in protein-ligand bonds 
is a key factor for better interactions in docking analyses (Kitchen et al., 
2004; Pinzi and Rastelli, 2019). An interaction between a ligand and a 
receptor is mediated by both structural affinity and energy through 
covalent or noncovalent bonds (Böhm and Klebe, 1996; Gohlke and 
Klebe, 2002). Among the noncovalent bonds, hydrogen bonds are sug-
gested to play determinant role in protein-ligand complexes (Böhm and 
Klebe, 1996; Zhou et al., 2012), including in respect of greater structural 

stability (Scotti et al., 2018; Zhou et al., 2012). Thus, our data showed 
that FAR had a higher affinity for the muscarinic acetylcholine receptor 
M3 (− 7.6 kcal/mol) than the muscarinic acetylcholine receptor M2 
(− 7.3 kcal/mol) and nicotinic (− 7.2 kcal/mol) receptors. Considering 
that this difference is relatively small, more detailed studies are needed 
to investigate these interactions. 

Interestingly, the M3 receptor-FAR complex occurred through 
hydrogen bonds with ASN152 and ALA238, and a hydrophobic inter-
action with TYR529, with the latter also interacting with the known 
ligand 9 EC. The interaction between FAR and the M2 receptor was via a 
hydrogen bond to TYR104, the same residue shown for its antagonist 
QNB. In addition, bonding site similarities may help in the identification 
of potential novel molecules, such as natural products (Ma et al., 2011). 
The only previous study using a docking approach with FAR was un-
dertaken by Silva et al. (2017), who found that FAR formed a stable 
inclusion complex with βCD with a low binding energy through 
hydrogen bonds, which is in accordance with our results. 

Finally, it is known that the interaction of the nicotinic receptor with 
its agonist (NCT) occurs at α-β interfaces, more specifically through in-
teractions with the aromatic residues TYR93, TRP149, TYR190 and 
TYR197 (Gharpure et al., 2019). Our data showed that FAR binds at the 
orthosteric site of the nicotinic receptor with a binding energy slightly 
higher than the nicotine (NCT). These results indicate that farnesol has 
an affinity for the nicotinic receptor comparable to its agonist, also 
through a hydrogen bond with LYS132 residue. 

5. Conclusions 

Taken together, our results indicate that FAR induces hypotension 
and bradycardia in normotensive rats, probably through interaction 
with cholinergic receptors - data that was further supported by in silico 
docking experiments. Furthermore, oral treatment with the FAR/βCD 
complex potentialized the antihypertensive effect of FAR compared to 
its alone form. Thus, we hope our results will point the direction for 
further pharmacological studies with farnesol regarding antihyperten-
sive therapy, biochemical analysis and its possible clinical use for car-
diovascular diseases. 
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